Future Design of Renewable Energy Markets

EUFORES Parliamentary Dinner Debate 4 December 2012
Brussels

Simon Müller Energy Analyst Renewable Energy Division

Renewable power growth forecast to accelerate

- Globally, progress is broadly on track to achieve 2DS objectives
- Hydropower remains main RE source (+3% p.a.) non-hydro growing at +14% p.a.
- Non-OECD accounts for two-thirds of the overall growth
 - China (40% of growth), Brazil, India lead; new markets expanding in all world regions

Mind the different contexts

- Apparent contradiction between markets:
 - OECD countries:RE perceived as driving up costs
 - China, India, Brazil: RE deployed as attractive options for getting energy security/diversification and – increasingly – good economics
- Very different contexts:
 - In most of OECD, RE drives generation from existing capacity out of the market
 - In emerging economies RE help to cover a deficit

Thought experiment: Target Model 2.0

- Perfect European grid (copper-plate)
- Full integration of day-ahead & intraday-markets & balancing
- CO2 price in place
- →Question: All problems solved? Including decarbonisation?

The (old) concern – Will spot markets deliver

- Without renewables:
 - Classical missing money problem
- During the transition:
 - Uncertainty can inhibit investments
 - Important transitional market-effects
- Close to decarbonisation:
 - Exploring new territory

The clas

€/MWh

roblem

Min Demand

Peak Demand

Classical missing money problem

- Capacity markets designed to deal with precisely this problem
- Growing shares of variable renewables tend to exacerbate the issue:
 - Fewer hours of very high residual load
 - Scarcity prices during less hours > requires even higher prices to recover fixed costs

Transition effects

The merit order effect

The merit order effect

The merit order effect

- RE decrease market price
- RE displaces conventional electricity
- Less attractive to invest in generation

Flexibility – transition effect: storage

- Medium-term: PV reduces value of pumped storage
- Long-term: Mutual increase of market value

The role of CO2 price in the transition

- For existing plants: rising CO2 price
 - Can induce fuel switch for carbon generators
 - Provides more revenue for existing low-C plants
- For new plants: high CO2 price
 - Credibility spiral:
 - High CO2 price not credible > Risk premium > Even higher price needed > Higher risk premium etc.
 - Future prices even at high values get discounted away

Uncertainty impacts on investments

- Fossil paradigm
 - Energy sector extracts, transports and converts fossil energy commodities
 - Implication for power sector: (sunk) investment costs make up only part of total costs
- Decarbonised paradigm
 - Commodity flows are replaced by capital investments
 - Capital costs domintate total costs
- Low carbon investments much more affected by uncertainty

All in all: A challenging transition!

- Displaced energy from conventional generation depresses market prices
- No incentive for flexibility investments under certain transition situations
- Future CO2 price gets discounted away, CO2 price credibility problem
- Uncertainty disproportionally renders lowcarbon investments less attractive

Long-term

Adaptation of the generation fleet

Adaptation of the generation fleet

→ Spot market prices may recover in the long term

The value of variable renewables

- At high penetrations difference between: instantaneous and annual value
- Instantaneous value "Every good/service that varRE can provide <u>if</u> the resource is available, will have a low value <u>in</u> <u>moments</u> when the resource is available"
- Annual value "(Variable) renewables are a cost effective, secure and clean way of supplying a certain amount of energy in one year"

The role of the CO2 price

- 50 g/kWh in line with 2050 targets for CO2 reduction
 - Leaves space for some 10% of unabated, efficient gas generation
 - Hours of operation highly variable year on year
 driven by wind, sun and economic situation
- When only low-carbon generators set the price, the CO2 price 'disappears' from the market
- → Not guaranteed that low CO2 generators benefit from high CO2 prices

A mixed picture in the long term

- Recovery of generation investments not ruled out – but much more challenging
- Instantaneous value of variable renewables volatile - despite their stable 'annual' value
- Close to full decarbonisation: not clear low carbon generation benefits from CO2 price with sufficient certainty

Thought experiment: Target Model 2.0

- →Answer: Plenty of issues left in particular during transition
- Possible misalignment of short-mid term investment incentives and future system needs
- CO2 price faces credibility/discounting issues
- Cost recovery not impossible in principle but much more challenging
- Uncertainty weights heaviest on low carbon investments

Future market design and renewables

- Criteria for a functioning market design
 - Mitigate regulatory uncertainty to get investments
 - Preserve other risks and competition to get efficiency and innovation
 - Ensure that full cost/benefit is actually reflected
- Conclusion for RE
 - Costs need to keep coming down
 - Market design needs to recognise value of RE
 - Secure, clean and (increasingly) low cost annual energy
 - Flexibility value of hydro and bioenergy

Thanks.

Simon.Mueller@IEA.org

